INTERMITTENT HYPOXIA IMPAIRS ENDOTHELIAL FUNCTION IN EARLY, RATHER THAN IN ADVANCED ATHEROSCLEROSIS

Izabela Tuleta¹, Carolina Nunes França¹, Daniela Wenzel², Bernd Fleischmann², Georg Nickenig¹, Nikos Werner¹, Dirk Skowasch¹

¹ Department of Internal Medicine II – Cardiology, Pulmonology, University of Bonn, Bonn

² Department of Physiology I, University of Bonn, Bonn

Background: Intermittent hypoxia seems to be a major pathomechanism of obstructive sleep apnea underlying progression of atherosclerosis. Goal of our study was to prove if hypoxia-induced vasculopathy depends on the initial stage of atherosclerosis.

Methods: 16 ApoE-/- mice were exposed to a 6-week-intermittent hypoxia (21-5% FiO(2), 33 cycles, 8h/day) immediately (early atherosclerosis, n=8) or after 5 weeks of high-cholesterol diet (advanced atherosclerosis, n=8). Remaining 16 ApoE-/- mice under normoxia served as corresponding controls. All animals were fed high-cholesterol diet during the whole experiment. Endothelial-dependent vessel relaxation was measured by means of an organ bath technique. Blood plasma CD31+/annexin V+ endothelial microparticles as well as sca1/flk1+ endothelial progenitor cells in blood and bone marrow were analyzed by flow cytometry. Levels of reactive oxygen species in aorta were evaluated by L-O12-enhanced chemiluminescance.

Results: Intermittent hypoxia impaired endothelial function ($56.6\pm6.2\%$ of maximal phenylephrine-induced vasoconstriction vs. control: $35.2\pm4.1\%$) and integrity (percentage of endothelial microparticles: $0.3\pm0.04\%$ vs. control: $0.1\pm0.02\%$, resp., p<0.05) in early atherosclerosis. This observation could be explained due to the attenuated peripheral repair capacity expressed as decreased number of endothelial progenitor cells in blood ($2.0\pm0.5\%$, $5.3\pm1.5\%$, resp., p<0.05) despite increased number of these cells in the bone marrow ($2.0\pm0.4\%$, $1.1\pm0.2\%$, resp., p<0.05) and the higher levels of free radicals under hypoxia (p<0.05). In contrast, endothelial function, as well as microparticle and endothelial progenitor cell levels were similar under hypoxia vs. control in advanced atherosclerosis.

Conclusions: Hypoxia aggravates endothelial dysfunction and destruction in early, but not advanced atherosclerosis.